【新智元導(dǎo)讀】歷時(shí)三周,陶哲軒成功地用 AI 工具完成了形式化多項(xiàng)式 Freiman-Ruzsa 猜想證明過程的工作。他再次呼吁數(shù)學(xué)研究者學(xué)會(huì)正確利用 AI 工具,網(wǎng)友驚呼:以后的數(shù)學(xué)論文不需要人類可讀了?
用 AI 工具輔助研究數(shù)學(xué)的項(xiàng)目,再一次被陶哲軒跑通!
三周前,他曾發(fā)布一篇博文,記錄下自己使用 Blueprint 在 Lean4 中形式化多項(xiàng)式 Freiman-Ruzsa 猜想的證明過程。
就在昨天,他激動(dòng)宣布:將多項(xiàng)式 Freiman-Ruzsa 猜想的證明形式化的 Lean4 項(xiàng)目,在三周后取得了成功!
現(xiàn)在,依賴關(guān)系圖已經(jīng)完全被綠色所覆蓋,Lean 編譯器也報(bào)告說,這個(gè)猜想完全遵循標(biāo)準(zhǔn)公理。
陶哲軒表示,在整個(gè)團(tuán)隊(duì)中,自己貢獻(xiàn)的代碼大概只有 5%。這個(gè)結(jié)果很鼓舞人心,因?yàn)檫@意味著數(shù)學(xué)家即使不具備 Lean 編程技能,也能領(lǐng)導(dǎo) Lean 的形式化項(xiàng)目。
他發(fā)現(xiàn),項(xiàng)目中在數(shù)學(xué)上最有趣的部分,形式化起來比較容易,而技術(shù)上看起來最顯而易見的步驟,卻最耗時(shí)。
而使用 Blueprint 將項(xiàng)目分解成難度小到中等的部分,效果很好,這就讓大量并行工作成為可能。
這樣,許多貢獻(xiàn)者就可以處理特定的子任務(wù),而無需理解整個(gè)證明過程,甚至可以完全不了解相關(guān)的數(shù)學(xué)領(lǐng)域知識(shí)。
就在幾分鐘前,Lean 成功證明了 PFR 猜想,且沒有留下任何懸而未決的問題(后文將會(huì)提到的「sorry」)。這意味著,這個(gè)項(xiàng)目的所有主要目標(biāo),都已經(jīng)圓滿完成。
與此同時(shí),他在三周前也就是 11 月 18 日的那篇博客也被網(wǎng)友翻出,引發(fā)熱議。
果然,AI 加持?jǐn)?shù)學(xué)研究顛覆力量的后勁,得需要數(shù)月的時(shí)間才能讓人們認(rèn)識(shí)到。
而只有在最前線的研究者,才能在第一時(shí)間切實(shí)感覺到這種巨大力量的沖擊和震撼。
陶哲軒呼吁:數(shù)學(xué)家們一定要學(xué)會(huì)用 AI 了有網(wǎng)友向陶哲軒提問:這是否意味著,有越來越多的證明是人類不可理解,但機(jī)器可解決的?
陶哲軒表示,恰恰相反,如果證明的形式化變得更加主流,并且更多地得到 AI 輔助,那完全有可能創(chuàng)建出既人類可讀、又能被機(jī)器閱讀的證明。
PFR 證明的 blueprint 就證明了這一點(diǎn) —— 既人類可讀,每個(gè)證明步驟還帶有形式化的理由,還能得到一個(gè)依賴關(guān)系圖,來可視化整個(gè)論證的全局結(jié)構(gòu)。
當(dāng)然,陶哲軒也提醒道,不要把「計(jì)算機(jī)輔助證明」和「不能提供理解 / 偶然成立的證明」搞混了。
比如對(duì)于有限單群分類的超過 10000 頁的證明,幾乎百分百是由人工生成的,但一個(gè)由計(jì)算機(jī)協(xié)助處理的替代證明,在某些方面看更令人滿意。
跟網(wǎng)友經(jīng)過幾輪討論后,陶哲軒做出以下總結(jié) ——
Blueprint 本身就是一種編程語言,可以看作一種 Lean 的偽代碼。
許多數(shù)學(xué)家都應(yīng)該將寫作風(fēng)格從標(biāo)準(zhǔn)數(shù)學(xué)英語 / LaTex,轉(zhuǎn)換為 Blueprint / LaTex。
網(wǎng)友表示,陶哲軒對(duì)于各種研究工具隨意掌握的程度,幾乎可以稱得上是可怕。
我在研究生階段對(duì)數(shù)學(xué)的嘗試,就就好像一個(gè)穴居人本來在搖晃一輛普通的獨(dú)輪車,忽然眼前出現(xiàn)了一輛直升機(jī),上面的人向我伸出手,告訴我來試試看,一點(diǎn)也不可怕。
自從聽說四色定理以來,我一直很清楚,形式化是數(shù)學(xué)的未來。但我沒有預(yù)料到的是,陶哲軒如此從容不迫,形式化才剛剛獲得牽引力,他就能用 AI 完成幾乎所有的數(shù)學(xué)寫作。
形式化,是指從基本公理和規(guī)則中真正推導(dǎo)出證明中的每個(gè)陳述。而陶哲軒在這篇博文里,把需要死記硬背的勞動(dòng)都抽象出來,交給了機(jī)器。
他的工作表明,形式化才剛剛開始在主流數(shù)學(xué)中受到關(guān)注。
已經(jīng)有人開始暢想:很可能會(huì)有一段時(shí)間,大多數(shù)證明只是在 Lean 或類似系統(tǒng)中完成,再也沒有人需要費(fèi)心寫一篇「人類可讀」的論文了。
數(shù)學(xué),將變成一種編程!
一位數(shù)學(xué)碩士表示,現(xiàn)在自己的研究步驟有三步 ——
1.理解自己想證明的東西,通過閱讀或者與人交談;
2.用紙筆繪制出包含要點(diǎn)的草圖;
3.將校樣輸入到 LaTeX 中,讓自己要交的作業(yè)變得人類可讀。
是的,如果我們只是要訓(xùn)練或微調(diào) AI 來產(chǎn)生答案,然后編寫一個(gè)循環(huán)來反饋,直到編譯器正確輸出,那我們自己并不需要真的理解。
用這種方法,我們還能生成更多的訓(xùn)練示例,可以手動(dòng)檢查結(jié)果是否符合要求,做上注釋。而訓(xùn)練,可以提高初始答案的準(zhǔn)確性。
以下是陶哲軒發(fā)在博客上的形式化過程,感興趣的讀者可以挑戰(zhàn)一下。
11 月,陶哲軒與 Yael Dillies 和 Bhavik Mehta 啟動(dòng)了一個(gè)合作項(xiàng)目,目的是利用 Lean4 對(duì)自己之前關(guān)于 Freiman-Ruzsa(PFR)猜想的預(yù)印本論文進(jìn)行形式化。
項(xiàng)目雖然啟動(dòng)不到一周,但進(jìn)展相當(dāng)順利,大部分文件都被形式化了。
這個(gè)項(xiàng)目得益于 Patrick Massot 的 Blueprint 工具,這個(gè)工具讓團(tuán)隊(duì)能夠編寫與 Lean 形式化緊密相關(guān)的、人類可讀的證明「藍(lán)圖」。
在 Blueprint 中,有一個(gè)陶哲軒特別喜歡的功能,那就是自動(dòng)生成的依賴圖。它可以提供形式化進(jìn)度的大致快照。截至當(dāng)時(shí),依賴圖的樣子如下:
在依賴圖的圖例中,不同的氣泡(表示引理)和矩形(表示定義)被賦予了不同的顏色。
簡(jiǎn)單來說,綠色的氣泡或矩形表示那些已經(jīng)被完全形式化的引理或定義,而藍(lán)色的則指那些已準(zhǔn)備好進(jìn)行形式化的引理或定義(這意味著它們的陳述已經(jīng)形式化,但證明還沒有,同時(shí)所有相關(guān)的前置引理和證明也是如此)。
而陶哲軒團(tuán)隊(duì)的目標(biāo),就是將所有通向「pfr」氣泡的底部氣泡,都變成綠色。
點(diǎn)擊依賴圖底部的「pfr」氣泡時(shí),可以看到以下內(nèi)容:
圖中,Blueprint 顯示出一種人類可讀的 PFR 語句形式,還附帶了這個(gè)語句的人類可讀證明,該證明依賴于項(xiàng)目中的其他語句:
注意,「pfr」氣泡是白色的,但有一個(gè)綠色邊框,這意味著 PFR 的陳述已經(jīng)在 Lean 中正式化,然而證明并沒有。
證明本身還沒有準(zhǔn)備好被形式化,是因?yàn)橐恍┫葲Q條件(特別是「entropy-pfr」Theorem 6.16)甚至還沒有形式化的陳述。
單擊依賴關(guān)系圖中 PFR 陳述下方的 Lean 鏈接,就可以進(jìn)入相應(yīng)的 Lean 文檔:
這就是 Lean 中的典型定理的樣子。在冒號(hào)之前有許多假設(shè),例如:
G 是一個(gè)屬于順序 2 的有限初等阿貝爾群 (這就是團(tuán)隊(duì)選擇形式化有限場(chǎng)向量空間的方式);A 是 G 的非空子集;A+A 的基數(shù)<K 倍 A 的基數(shù)。
冒號(hào)后邊的陳述是結(jié)論:A 可以以 c+H 的和的形式包含在 G 的子群 H 中,以及在最多 2K12 的基數(shù)的集合 c 中。
聰明的讀者可能會(huì)注意到,上面的定理似乎缺少一兩個(gè)細(xì)節(jié),例如,它沒有明確斷言 H 是一個(gè)子群。
這是因?yàn)椤竝retty printing」模式抑制了定理陳述中的一些信息,只要單擊「來源」鏈接,就可以看到了。
可以看到,H 需要具有 G 加法子群的類型。
該定理底部有一個(gè)明顯的「sorry」,這意味著尚未為該定理提供證明,但最終意圖當(dāng)然是用實(shí)際證明,來代替這個(gè)「sorry」。
填補(bǔ)這個(gè)「sorry」現(xiàn)在還很難做到,所以需要尋找一個(gè)更簡(jiǎn)單的任務(wù)。
下面是一個(gè)簡(jiǎn)單的中間引理「ruzsa-nonneg」,它出現(xiàn)在證明中:
該表達(dá)式 d【X;Y】指的是 X 和 Y 之間的熵 Ruzsa 距離,它是一個(gè)實(shí)數(shù)。
氣泡是藍(lán)色的,帶有綠色邊框,這意味著陳述已經(jīng)形式化,證明也準(zhǔn)備好形式化了。
Blueprint 依賴關(guān)系圖表明,這個(gè)引理可以從前面的一個(gè)引理中推導(dǎo)出來,稱為「ruzsa-diff」:
「uzsa-diff」也是藍(lán)色的,邊框是綠色的,所以它與「ruzsa-nonneg」具有相同的當(dāng)前狀態(tài):陳述是形式化的,證明也準(zhǔn)備好形式化了,但證明還沒有用 Lean 編寫。其中,H【X】是 X 的香農(nóng)熵。
通過觀察 Lemma 3.11 和 Lemma 3.13,我們可以清楚地看到 | H [X] - H [Y]| 顯然是非負(fù)的。
因此,即使我們還不知道如何證明 Lemma 3.11,但假設(shè) Lemma 3.11 成立,并補(bǔ)全 Lemma 3.13 的證明,應(yīng)該是輕而易舉的事。
Lemma 3.11 的形式化如下:(「sorry」表示 Lemma 目前還沒有證明)
同時(shí),Lemma 3.13 的形式化為:
現(xiàn)在,我們要試著把后一個(gè)「sorry」填上。
在 PFR github 倉(cāng)庫(kù)的本地副本中,陶哲軒用編輯器(Visual Studio Code,擴(kuò)展名為 lean4)打開了相關(guān)的 Lean 文件,并導(dǎo)航到「rdist_nonneg」的「sorry」處。
隨附的「Lean 信息視圖」就會(huì)顯示 Lean 證明的當(dāng)前狀態(tài):
在底部,可以看到我們需要證明的目標(biāo)。
接下來,在證明這個(gè)說法時(shí),需要運(yùn)用一系列「戰(zhàn)術(shù)」來改變目標(biāo)和 / 或假設(shè)。
第一步是加入應(yīng)用 Lemma 3.11 所需的因子 2。
現(xiàn)在,我們有了兩個(gè)目標(biāo)(和兩個(gè)「sorry」):一個(gè)是證明 0≤2d [X;Y] 等價(jià)于 0≤d [X;Y];另一個(gè)是證明 0≤2d [X;Y]。
在填上第一個(gè)「sorry」之后的狀態(tài)如下(刪去了一些無關(guān)的假設(shè)):
這里可以使用一種非常方便的「linarith」策略,它能解決任何可以通過現(xiàn)有假設(shè)的線性運(yùn)算得出的目標(biāo):
成功之后可以看到,狀態(tài)報(bào)告顯示這個(gè)分支已經(jīng)沒有需要證明的目標(biāo)了。所以,我們繼續(xù)剩下的「sorry」,也就是證明 0≤2d [X;Y]:
在這里,我們將嘗試引用 Lemma 3.11。為此,陶哲軒添加了幾行代碼:
于是,我們又有了兩個(gè)子目標(biāo),一個(gè)是證明約束
(可以稱之為「h」),另一個(gè)是就從 h 推導(dǎo)出前一個(gè)目標(biāo) 0≤2d [X;Y]。
對(duì)于第一個(gè)目標(biāo),需要調(diào)用正在編碼 Lemma 3.11 的「diff_ent_le_rdist」引理。
其中一種方法是嘗試使用「exact? 」策略,它會(huì)自動(dòng)搜索,看目標(biāo)是否可以立即從現(xiàn)有的引理中推導(dǎo)出來:
于是,陶哲軒點(diǎn)擊了建議的代碼(系統(tǒng)會(huì)自動(dòng)將其粘貼到正確的位置)。結(jié)果成功了,只留下最后的「sorry」:
這里,陶哲軒通用使用了「exact?」策略,并按照它的建議建立匹配了邊界
:
在補(bǔ)全最后一個(gè)「sorry」時(shí),陶哲軒再一次嘗試了「exact?」,想知道如何把 h 和 h' 結(jié)合起來才能達(dá)到預(yù)期目標(biāo),結(jié)果成功了!
可以看到,所有的下劃線都消失了。也就是說,Lean 已將其視為有效證明。
通過省略幾個(gè)中間步驟,我們可以將這個(gè)證明壓縮得相當(dāng)緊湊:
現(xiàn)在證明完成了!
我們最后得到的,基本就是一個(gè)「單線證明」,考慮到 Lemma 3.11 和 Lemma 3.13 是如此接近,這也是合情合理的。
然后,陶哲軒將所有內(nèi)容推送回 Github 主版本庫(kù)。
Blueprint 的重建需要相當(dāng)長(zhǎng)的時(shí)間(約半小時(shí)),依賴關(guān)系圖現(xiàn)在以綠色顯示 「ruzsa-nonneg」:
因此可以說,PFR 的形式化更接近完成了。
不過,雖然「ruzsa-nonneg」現(xiàn)在被涂成綠色,但還沒有這個(gè)結(jié)果的完整證據(jù),因?yàn)樗蕾嚨囊怼竢uzsa-diff」不是綠色的。
從這一點(diǎn)上看,證明仍然是局部完成的。
陶哲軒表示,希望在未來的某個(gè)時(shí)候,前身結(jié)果也能被證明,那時(shí),就可以說 PFR 猜想的結(jié)果,得到了完全的證明。
參考資料:
https://news.ycombinator.com/item?id=38528582
https://terrytao.wordpress.com/2023/11/18/formalizing-the-proof-of-pfr-in-lean4-using-blueprint-a-short-tour/
本文來自微信公眾號(hào):新智元 (ID:AI_era)
本文鏈接:http://www.tebozhan.com/showinfo-45-2815-0.htmlAI 顛覆數(shù)學(xué)研究!陶哲軒借 AI 破解數(shù)學(xué)猜想,形式化成功驚呆數(shù)學(xué)圈
聲明:本網(wǎng)頁內(nèi)容旨在傳播知識(shí),若有侵權(quán)等問題請(qǐng)及時(shí)與本網(wǎng)聯(lián)系,我們將在第一時(shí)間刪除處理。郵件:2376512515@qq.com