超逼真的機器人小鎮來了!
在這里,機器人可以像人一樣在超市里購物:
買菜回家做飯:
在辦公室里接咖啡(旁邊還有人類同事):
不只有人形機器人,機器狗、臂式機器人也在這個“城市”里穿梭自如。
這就是由上海AI實驗室新提出的首個模擬交互式3D世界:GRUtopia(中文名:桃源)。
在這里,由多達100k個交互式、帶精細注釋的場景自由組合成逼真城市環境。
包含室內室外,餐廳、超市、辦公室、家庭等89個不同場景類別。
由大模型驅動的NPC,可以在這個世界里和機器人對話交互。
這樣一來,各種機器人能在虛擬小鎮里完成各種行為模擬,也就是近流行的Sim2Real路線,能大幅降低具身智能現實世界數據收集難度和成本。
該項目計劃開源,現階段在GitHub上已提供demo安裝指南。
安裝成功后,就能在demo里控制一個人形機器人在房間內活動,并支持調整不同視角。
機器人的虛擬桃源
其核心工作共有三項:
GRScenesGRResidentsGRBench
其中,GRScenes是一個包含大規模場景數據的數據集。
它極大程度上擴展了機器人可以活動和操作的環境范圍,此前的工作更聚焦于家庭場景。
該研究表示,他們的目標是將通用機器人的能力擴展到各種服務場景,比如超市、醫院等。同時覆蓋室內室外環境,包括游樂園、博物館、展覽館等。
對于各個場景,他們都進行了精細高質量建模,100 個場景包含 96 個類別的 2956 個交互式物體和 22001 個非交互式物體。
GRResidents是一個NPC系統。
它由大模型驅動,同時對模擬環境中的場景信息非常了解。因此NPC可以推斷物體之間的空間關系,參與動態對話和任務分配。
借助于這個系統,GRUtopia可以生成海量場景任務供機器人完成。
通過與人類進行交叉驗證,NPC系統在描述和定位對象上的準確率都不錯。
在描述實驗中,讓NPC系統隨機選擇一個物體進行描述,人類能找到對應物體就算成功。
在定位實驗中則反過來,如果NPC系統能根據人類給出的描述找到對應物體就算成功。
調用不同大模型的成功率不盡相同,綜合來看GPT-4o的表現好。
GRBench是一個評估具身智能表現的benchmark。
它包含3個基準,涉及目標定位導航(Object Loco-Navigation)、社交定位導航(Social Loco-Navigation)和定位操作(Loco-Manipulation),這三種評估的難度逐漸遞增。
為了分析NPC和控制API的性能,研究提出了基于LLM和VLM的基線,以驗證基準設計的合理性。
實驗結果表明,與隨機策略相比,在所有基準測試中,使用大型模型作為后端代理的表現都更好。
而且Qwen-VL在對話上的表現超過了GPT-4o。
后整體對比來看,GRUtopia其他平臺在各個維度上都更強大。
該研究工作由上海人工智能實驗室OpenRobot Lab領銜。
該實驗室聚焦研究具身通用人工智能,致力于構建軟硬虛實一體化的通用機器人算法體系。
今年5月,該團隊還發布了具身多模態大模型Grounded 3D-LLM,能夠自動化生成物體到局部區域的場景描述與具身對話數據,有效緩解了目前三維場景理解的局限性。
本文鏈接:http://www.tebozhan.com/showinfo-17-102814-0.html具身智能小鎮來了!機器人逛超市買菜滿街跑
聲明:本網頁內容旨在傳播知識,若有侵權等問題請及時與本網聯系,我們將在第一時間刪除處理。郵件:2376512515@qq.com